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Abstract

Stocks of soil organic carbon represent a large component of the carbon cycle that may
participate in climate change feedbacks, particularly on decadal and century scales.
For Earth system models (ESMs), the ability to accurately represent the global distri-
bution of existing soil carbon stocks is a prerequisite for predicting future carbon-climate5

feedbacks. We compared soil carbon predictions from 16 ESMs to empirical data from
the Harmonized World Soil Database (HWSD) and Northern Circumpolar Soil Carbon
Database (NCSCD). Model estimates of global soil carbon stocks ranged from 510 to
3050 Pg C, compared to an estimate of 890–1660 Pg C from the HWSD. Model predic-
tions for the high latitudes fell between 60 and 800 Pg C, compared to 380–620 Pg C10

from the NCSCD and 290 Pg C from the HWSD. This 5.3-fold variation in global soil car-
bon across models compared to a 3.4-fold variation in net primary productivity (NPP)
and a 3.8-fold variation in global soil carbon turnover times. The spatial distribution of
soil carbon predicted by the ESMs was not well correlated with the HWSD (Pearson’s
correlations < 0.4, RMSE 9.4 to 22.8 kg C m−2), although model-data agreement gen-15

erally improved at the biome scale. There was poor agreement between the HWSD
and NCSCD datasets in northern latitudes (Pearson’s correlation=0.33), indicating
uncertainty in empirical estimates of soil carbon. We found that a reduced complexity
model dependent on NPP and soil temperature explained most of the spatial variation
in soil carbon predicted by most ESMs (R2 values between 0.73 and 0.93). This result20

suggests that differences in soil carbon predictions between ESMs are driven primarily
by differences in predicted NPP and the parameterization of soil carbon responses to
NPP and temperature not by structural differences between the models. Future work
should focus on accurately representing these driving variables and modifying model
structure to include additional processes.25
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1 Introduction

Heterotrophic organisms in soil respire dead organic carbon, the largest carbon pool
in the terrestrial biosphere (Jobbagy and Jackson, 2000). Heterotrophic respiration in
turn is highly sensitive to the amount of soil organic carbon in the soil (Parton et al.,
1993), changes in soil temperature (Lloyd and Taylor, 1994; Davidson and Janssens,5

2006), soil moisture (Orchard and Cook, 1983; Ryan and Law, 2005), and disturbance
regimes such as land use change (Post and Kwon, 2000) and fire (Harden et al., 2000).
This sensitivity to climate variability creates the potential for feedbacks between climate
and soil carbon stocks.

While field studies suggest that the terrestrial biosphere is currently a net sink for car-10

bon dioxide (Lund et al., 2010), it is unclear if this sink will persist as climate changes.
Projections from recent Earth system models (ESMs) suggest that the magnitude of
this sink is likely to shrink in response to climate change over the 21st century (Cramer
et al., 2001; Friedlingstein et al., 2006; Koven et al., 2011). The exact magnitude of
this shift is highly uncertain (Friedlingstein et al., 2006) and depends on several mech-15

anisms including feedbacks from nitrogen (Thornton et al., 2009), the effect of drought
on NPP, tree mortality, and fires (Phillips et al., 2009; Huntingford et al., 2008; Goulden
et al., 2011). High latitude soils contain large stocks of soil carbon (Tarnocai et al.,
2009) making them particularly vulnerable to climate feedbacks (Schuur et al., 2008;
Koven et al., 2011) and therefore critical to represent accurately in ESMs.20

Because soil carbon represents such a large fraction of the terrestrial carbon pool,
projections of the carbon cycle response to future climate depend on accurate repre-
sentation of soil carbon stocks and fluxes. However, there have been few quantitative
assessments of ESM skill in predicting these quantities, contributing to uncertainty
in the confidence of model predictions. To help reduce this uncertainty, we analyzed25

current representations of soil carbon stocks from ESMs participating in the 5th Cli-
mate Model Intercomparison Project. Our rationale was that if ESMs can accurately
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represent current soil carbon stocks, then we might have more confidence in their abil-
ity to predict future stocks under a changing climate (Luo et al., 2012).

Our analysis had three specific goals: (1) quantify the variation in ESM representa-
tion of soil carbon stocks, (2) understand the driving factors regulating soil carbon distri-
bution in ESMs, and (3) compare the ESM soil carbon stocks to empirical data. We con-5

ducted these analyses at grid, biome, and global scales across models in order to as-
sess spatial variability in the data and model predictions. We compared model outputs
to the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) with
world-wide coverage and the Northern Circumpolar Soil Carbon Database (Tarnocai
et al., 2009) which only covered northern high latitudes. We used an additional dataset10

at high latitudes because these areas contain a large percentage of global soil carbon
but are difficult to model and measure empirically. We expected ESMs to represent
high latitude soils poorly because terrestrial decomposition models were developed
for mineral soils, as opposed to the organic soils found in many high latitude ecosys-
tems (Neff and Hooper, 2002; Ping et al., 2008; Koven et al., 2011). More generally,15

we expected that the global distribution of soil carbon in the ESMs would be primarily
driven by NPP, soil temperature, and soil moisture. We also anticipated that ESMs with
more soil carbon pools would be capable of representing more variation in soil carbon
dynamics, and thus generate more accurate predictions of soil carbon distributions.

2 Materials and methods20

In this study, we examined soil carbon variability across 16 ESMs (Tables 1,
S1) from the 5th Climate Model Intercomparison Project (CMIP5). The model
predictions were compared with the Harmonized World Soil Database (HWSD)
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and high latitude soil carbon stocks from North-
ern Circumpolar Soil Carbon Database (NCSCD) (Tarnocai et al., 2009). We analyzed25

the underlying drivers of soil carbon variability with a reduced complexity model.

14441

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14437/2012/bgd-9-14437-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14437/2012/bgd-9-14437-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 14437–14473, 2012

Soil carbon drivers
and benchmarks in

Earth system models

K. E. O. Todd-Brown et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.1 Earth system models

ESM outputs were drawn from CMIP5 because they used common simulation proto-
cols enabling direct comparisons between models. One of the goals of CMIP5 is to
facilitate benchmarking of ESMs through the historical simulation protocol, which has
a prescribed time series of atmospheric CO2 mixing ratios and land use change (Taylor5

et al., 2011). ESMs were selected from the CMIP5 repository based on the availability
of soil carbon predictions and consultation with the modeling centers.

The model structure for terrestrial decomposition across ESMs is relatively uniform
(Table 1). The soil carbon sub-models in all ESMs represent decomposition as a first-
order decay process involving 1–9 dead (soil or litter) carbon pools. The temperature10

sensitivity of decomposition in most ESMs is described by the Q10 or Arrhenius equa-
tions, which are functionally similar (Lloyd and Taylor, 1994; Davidson and Janssens,
2006). The Q10 function describes the factor of increase (Q10) in decomposition rate
for a 10 ◦C increase in temperature (T ) from the initial temperature (T0), such that

Q10(T ) =Q
(T−T0)/10
10 . However, in BCC-CSM1.1 and GFDL-ESM2G, decomposition rate15

increases up to some optimal temperature and then decreases (Parton et al., 1987;
Ji et al., 2008; Shevliakova et al., 2009). In addition, the soil respiration response to
temperature in GISS-E2 is a linear fit to data from Del Grosso et al. (2005) up to 30 ◦C,
within the noise of the data, with a plateau above 30 ◦C. In all of the models, decomposi-
tion sensitivity to moisture either increases monotonically with increasing soil moisture20

or increases up to some optimum moisture level and then decreases. Nearly half of the
ESMs include nitrogen interactions with soil carbon.

We downloaded soil carbon, litter carbon, annual net primary production (NPP), soil
temperature, and total soil water from the historical simulation, where available, for
each ESM (cSoil, cLitter, npp, tsl, and mrso, respectively, from the CMIP5 variable list).25

Litter carbon was a small fraction of soil carbon for the models that reported litter pools;
thus, we combined litter and soil carbon for this analysis and refer to the sum as soil
carbon. Coarse woody debris (cCwd from the variable list) was not included in the
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totals since there is no respiration from this pool in the two models which report this
variable (CCSM4 and NorESM1). INM-CM4 did not report NPP directly, so we derived
NPP from gross primary production and autotrophic respiration (gpp and ra from the
variable list). The monthly means for all variables from 1995–2005 were averaged for
each grid cell to generate an overall mean for comparison to the HWSD and to use as5

drivers for our reduced complexity model (see below). Soil temperatures were reported
for each soil layer but only the top 10 cm mean was used in this analysis. Land area
was calculated from the grid area modified by the land cover for each model (areacella
and sftlf from the variable list, respectively) where available. Any grid cells reported to
be centered at the poles were dropped from the analysis. All ensembles were averaged10

for each model; however, the some variables were in all ensembles for a given model at
the time of download. For example, GISS-E2-R reported cSoil but not tsl for ensemble
r1i1p1 but did report both variables for ensemble r4i1p3.

We performed a hierarchical cluster analysis and found that ESMs from the same
climate center generated very similar distributions of soil carbon (Fig. S1). Clusters15

were constructed using complete linkage of the Euclidian distances between the global
soil carbon distributions for each model. Models from the same climate center always
showed more than 90 % relative similarity and included the following pairs: GISS-E2 H
and R, HadGEM2 ES and CC, IPSL-CM5 (LR) A and B, MIROC-ESM CHEM and base
model, and finally NorESM1 ME and M. Therefore model outputs within each of these20

pairs were averaged prior to further analysis.
ESMs do not report the depth of carbon in the soil profile to CMIP5, making direct

comparison with empirical estimates of soil carbon difficult. For our analysis, we as-
sumed that all soil carbon was contained with the top 1 m. We recommend that future
model inter-comparison projects request soil carbon output from model simulations25

with specific depth ranges (for example, soil carbon above and below 1 m) to allow for
more accurate and direct comparison to survey data.
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2.2 Datasets

The HWSD provided empirical estimates of global soil carbon stocks to validate ESM
predictions. The HWSD is a product of the Food and Agriculture Organization of the
United Nations and the Land Use Change and Agriculture Program of the Interna-
tional Institute for Applied Systems Analysis. The HWSD aggregates data from the5

European Soil Database (ESB, 2004), the Soil Map of China (Shi et al., 2004), re-
gional soil and terrain databases (Sombroek, 1984), and the Soil Map of the World
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Soil carbon stocks were calculated from bulk
densities and organic carbon concentrations given in the HWSD for the top 1 m of soil
at 0.5◦ ×0.5◦ resolution (Fig. 1). Bulk density estimates were derived from soil texture;10

however, this approach is not appropriate for high carbon soils (Saxton et al., 1986;
FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Therefore, we replaced Histosol and Andisol
bulk densities with values from World Inventory of Soil Emission Potentials (Batjes,
1996).

Because high latitude soils contain a large fraction of global soil carbon, we also15

validated ESM predictions of soil carbon in high latitudes with the NCSCD, which is an
independent survey of soil carbon in this region (Tarnocai et al., 2009). The NCSCD
covers 18.8×106 km2, including areas with different geological histories and stages of
soil development. We used the 1◦×1◦ soil carbon data product for the first meter of soil
(Fig. 1). The spatial and soil data used to develop this database were collected during20

the last 60 yr and originated from a variety of sources.
Quantitative uncertainty analyses for the HWSD and NCSCD have not been per-

formed and would be a challenge to construct because of the diverse data sources
involved. However, some estimate of uncertainty is essential to provide a range within
which model projections are expected to fall. To generate such a range for the total soil25

carbon in both datasets, we constructed preliminary 95 % confidence intervals (CI95)
based on expert opinion. These estimates must be interpreted with caution because
they are not based on a formal error propagation. Furthermore, these estimates only

14444

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14437/2012/bgd-9-14437-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14437/2012/bgd-9-14437-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 14437–14473, 2012

Soil carbon drivers
and benchmarks in

Earth system models

K. E. O. Todd-Brown et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

apply to global or regional totals, and uncertainties for individual grid cells are likely to
be larger.

For the HWSD, the major sources of error are related to analytical measurement of
soil carbon, variation in carbon content within a soil type, and mapping of soil types.
Analytical measurements of soil carbon concentrations are generally precise, but mea-5

surements of soil bulk density are more uncertain and may contribute to CI95 values
that are ±15 % of the mean carbon content for a given soil profile. Soil types in the
HWSD are defined based on Food and Agriculture Organization soil taxonomic units
that are assumed to experience similar histories of soil forming factors such as cli-
mate, vegetation, disturbance, topography, and parent material. Batjes (1997) reported10

quartiles of soil carbon content for 23 soil taxonomic units based on 18 to 1270 soil
profiles per unit. These quartiles suggest that soil carbon content is approximately log-
normally distributed, allowing for calculation of CI95 values for each soil unit following
log-transformation. When back transformed, CI95 ranged from 6 to 33 % below the me-
dian to 6 to 48 % above the median, with an average CI95 of 14 % below to 17 % above15

the median across all 23 units.
The final major source of HWSD uncertainty relates to the mapping of soil units and

scaling of soil maps to 0.5 ◦. Soil taxonomic units and associated carbon contents were
spatially extrapolated using expert knowledge informed by topography, geology, and
vegetation (usually based on aerial photography) Original soil maps were drawn at 1 :20

1000000 or 1 : 5000000 spatial resolution and scaled up in the HSWD by classifying
each 0.5 ◦ grid cell according to its dominant soil unit. We assumed that the uncertainty
associated with mapping and scaling is similar in magnitude to measurement error
and spatial variation, with a CI95 of approximately ±15 % of the mean. To estimate
an overall CI95 for the HWSD, we assumed that variation in soil carbon content within25

soil taxonomic units already includes analytical error, and that median carbon content
within a soil unit is extrapolated by multiplying by the area of the unit. Thus the CI95
values representing variation in soil carbon content and mapping uncertainty can be
summed to yield an overall CI95 of 29 % below the mean to 32 % above the mean, or
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891 to 1657 Pg C. This level of uncertainty is consistent with other empirical estimates
of global soil carbon stocks that range from 1220 to 1576 Pg C (Sombroek et al., 1993;
Eswaran et al., 1993; Jobbagy and Jackson, 2000).

For the NCSCD, the uncertainties vary by geographic region. The North American
portion of the dataset is based on analysis of 1169 pedons producing a medium to high5

confidence rating (66–80 %). Thus we estimate the CI95 for the North American portion
of the NCSCD to be 165±17 Pg C, corresponding to ±10 % of the mean. In Eurasia,
soil carbon estimates are based on fewer pedons (591) plus 90 peat cores producing
a low to medium confidence rating (33–66 %). Therefore we estimate the CI95 for the
Eurasian region to be 331±99 Pg C, or ±30 % of the mean. Carbon in Yedoma deposits10

and river deltas was estimated independently using surveyed depth information where
available. This deeper soil carbon had the lowest confidence rating but contributes only
∼ 1 % or 5 Pg of the database total; therefore we allow for a CI95 of 5±5 Pg C on this
estimate. Together, these uncertainty estimates yield an overall CI95 of 501±121 Pg C
for the first meter of soil.15

To evaluate ESM soil carbon predictions across biomes, we aggregated HWSD esti-
mates and model predictions of soil carbon within biomes. The biome map was based
on the land cover data product from the MODIS/TERRA-AQUA mission (NASA LP
DAAC, 2008) (Fig. S2). We assigned one of 16 land cover types to each 1◦×1◦ grid cell
by taking the most common land cover from the original underlying 0.05◦ ×0.05◦ grid.20

Each 1◦ ×1◦ grid cell was assigned to one of 9 biomes: tundra, boreal forest, tropical
rainforest, temperate forest, desert and scrubland, grasslands and savannas, cropland
and urban, snow and ice, or permanent wetland. Details for the biome construction can
be found in Fig. S2.

2.3 Regridding approach25

All model outputs and datasets were regridded to 1◦ ×1◦ for biome and grid level com-
parison. Our regridding approach assumed conservation of mass and that a latitudi-
nal degree is proportional to distance for neighboring grid cells. Regridding the model
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outputs to 1◦ ×1◦ down-scales the models while up-scaling the data (Table 2). The
uniform grid size allowed for direct comparisons without differences in sample size.

2.4 Reduced complexity models

We developed reduced complexity models to evaluate the drivers of modeled soil car-
bon variability and facilitate comparisons between ESMs. These reduced complexity5

models consisted of a single pool of soil carbon driven by NPP, soil temperature, and
soil moisture (Figs. S3–S5). The rationale for this approach is that we can quantify the
relationship between driving variables and soil carbon outputs for each model and then
compare these relationships across models. Driving variables for the reduced models
are taken from ESM annual means of NPP, soil temperature (T , top 10-cm mean), and10

total soil water content (W ) over the period 1995–2005.
Our reduced models assume that the soil carbon pool is at steady state, such that

NPP inputs equal outputs from heterotrophic respiration (R):

0 =
dC
dt

= NPP−R
15

For the simplest reduced model, we assumed that soil respiration is directly propor-
tional to the soil carbon pool with rate constant k (Olson, 1963; Parton et al., 1987)

R = kC

Combining the two above equations yields the simplest reduced model, Eq. (1), in20

which soil carbon is proportional to NPP and inversely proportional to decomposition
rate (k):

C =
NPP
k

(1)

We formulated a second reduced model, Eq. (2), in which soil respiration depends25

on soil temperature (T ) according to a Q10 function with an initial temperature of 15 ◦C
14447
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(Lloyd and Taylor, 1994):

C =
NPP

kQ(T−15)/10
10

(2)

A third reduced model, Eq. (3), includes a moisture modifier which monotonically in-
creases with total soil water content (W ) according to an exponential function, where a5

is a normalization parameter and b is the scaling exponent:

C =
NPP

kQ(T−15)/10
10 aW b

(3)

The parameters k, Q10, a, and b in each reduced model were optimized on the ESM
soil carbon predictions and driving variables by grid cell. For the optimization, we10

used a constrained Broyden-Fletcher-Goldfarb-Shanno algorithm (Byrd et al., 1995),
a quasi-Newtonian method, as implemented in R 2.13.1 (R Development Core Team,
2011). Broyden-Fletcher-Goldfarb-Shanno was selected for parameter fitting because
of its robust convergence and short run time. We ran the optimization with the fol-
lowing constraints: ak ∈ (10−4,104), Q10 ∈ (10−4,5), b ∈ (−3,3). The initial parameter15

estimates were ak = 0.1, Q10 = 1, b = 0. We used root mean squared error (RMSE) as
the measure function.

2.5 Statistical analyses

ESM predictions were compared to datasets using Pearson’s correlation, root mean
squared error (RMSE), and Taylor scores using R 2.13.1 (R Development Core Team,20

2011). The Taylor score (TS) combines the Pearson’s correlation (c) and standard de-
viation (σ) of the model results (m) compared to the data (d ):

TS(d ,m) =
4[1+c (d ,m)][

σ (m)/σ (d )+σ (d )/σ (m)
]2 [

1+cmax
] ,
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where cmax is the maximum correlation attainable, assumed to be 1 in this case (Taylor,
2001). Biome aggregated totals were compared to the HWSD using linear regression.

3 Results

3.1 Global soil carbon

The mean (± SD) global soil carbon reported across all ESMs was 1480±740 Pg,5

whereas the global soil carbon in the HWSD was 1255 Pg with a CI95 from 891–
1657 Pg (Table 2, Fig. 2). CCSM4 reported the lowest total at 514 Pg C and MPI-
ESM-LR the highest at 3046 Pg C. Examining only the area shared by each ESM and
the HWSD reduces the global carbon totals but does not substantially change the
rank order of the models (Table 2). CCSM4 and NorESM1 underestimated global soil10

carbon stocks by up to 50 %, whereas GISS-E2, MIROC-ESM, and MPI-ESM-LR over-
estimated global soil carbon stocks anywhere from 55 % to 140 %. The other models
predicted global soil carbon totals that were within 25 % of the HWSD mean and fell
within its preliminary CI95.

High latitude soil carbon was generally underestimated by the ESMs, and the model15

rankings change when examining only high-latitude soil carbon as defined by grid cells
in the NCSCD (Table 2, Fig. S6). CCSM4 and NorESM1 predicted just over 10 % of the
expected total soil carbon in the high latitudes. HadGEM2, BCC-CSM1.1, INM-CM4,
MPI-ESM, CanESM2 also predicted soil carbon totals below the preliminary CI95 for
the NCSCD. In contrast, GFDL-ESM2G and MIROC-ESM overestimated high latitude20

soil carbon stocks by 45–60 %. Only IPSL-CM5 and GISS-E2 predictions fell within the
CI95 for the NCSCD.

3.2 Spatial distribution of soil carbon

The predicted spatial distribution of soil carbon stocks varied widely among the ESMs
(Fig. 3). CCSM4 and NorESM1 had the lowest overall soil carbon densities, but showed25
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high densities in Northern South America, Central Africa, Eastern Asia, and Eastern
North America. HadGEM2, BCC-CSM1.1, and INM-CM4 showed a broader range of
soil carbon densities with high densities in North America, Western South America,
Central Africa, Southeastern Asia, and Northern Eurasia excluding Siberia. HadGEM2
also showed elevated soil carbon in Southeastern South America. CanESM2 predicted5

high soil carbon in Northeastern North America, Northern Europe, Northeastern Asia,
Central Africa, and Eastern South America. GFDL-ESM2G and MIROC-ESM showed
uniformly high carbon densities across all high northern latitudes and around the Ti-
betan plateau. GISS-E2 predicted a region of high soil carbon across the northern
latitudes of North America and northern Europe, as well as another area of high soil10

carbon from northeastern to southwestern Asia. MPI-ESM-LR showed an inverse pat-
tern compared with the other ESMs; soil carbon peaked in the mid-latitudes across
Asia, Western North America, Eastern Africa, Southern South America, and Southern
Coastal Australia.

There was generally poor agreement between the ESMs and the HWSD soil carbon15

distribution (Table 3). Across all common grid cells, ESMs had Pearson correlations
between 0.00 and 0.39 with a highly variable RMSE between 9.4 and 22.8 kg C m−2

and Taylor scores ranging from 0.21 to 0.69. Model agreement with the high latitude
NCSCD dataset was even worse (correlations between −0.17 and 0.19, Taylor scores
between 0.05 and 0.49, and RMSE between 16.3 and 28.0 kg C m−2). Agreement20

between the HWSD and NCSCD datasets was also low (correlation of 0.33, RMSE of
20.0 kg C m−2, and Taylor score of 0.60), although better than any ESM agreement
with the NCSCD dataset.

ESM agreement with the HWSD generally improved at the biome level (Fig. 4). BCC-
CSM1.1 and CanESM2 stood out as being highly correlated with HWSD (R2 > 0.90,25

p < 0.01), though CanESM2 over-estimated soil carbon in boreal forest and grass-
lands and savanna. Biome predictions from HadGEM2, IPSL-CM5, INM-CM4, and
MIROC-ESM also correlated well with the HWSD (0.90 > R2 > 0.75, p < 0.01) but the
regression slopes and intercepts diverged from 1.0 and zero, respectively (Fig. 4).
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HadGEM2 over-estimated soil carbon in grasslands and savanna. ISPL-CM5 gen-
erally over-estimated all biomes except deserts and scrublands, which were under-
estimated. INM-CM4 over-estimated grasslands, savanna, boreal forests, croplands,
and urban. MIROC-ESM consistently over-estimated all biomes. Both CCSM4 and
NorESM1 were moderately correlated with the HWSD (0.55 > R2 > 0.50, p < 0.01)5

consistently under-estimating biome totals with notable under-estimations in the tun-
dra, boreal forest, desert, and scrubland biomes. Biome totals from MPI-ESM-LR were
also moderately correlated with the HWSD (R2 = 0.56, p = 0.01), but this model consis-
tently over-estimated biome totals, particularly grasslands and savanna. GFDL-ESM2G
and GISS-E2 did not correlate significantly (p > 0.05) with the HWSD on the biome10

level. GFDL-ESM2G over-estimated biome totals from tundra and boreal forests and
under-estimated those of tropical rainforests, croplands, and urban. GISS-E2 over-
estimated biome totals in desert, scrubland, grasslands, savanna, tundra, and boreal
forests and under-estimated tropical rainforests.

3.3 Drivers of ESM variability15

The spatial variability in all but two ESMs was well explained by the reduced complexity
model (Eq. 2) driven by NPP and soil temperature (R2 > 0.73). Turnover times (1/k)
for global soil carbon across the ESMs ranged from 11 to 39 yr, and Q10 values ranged
from 1.5 to 2.6 (T0 = 15 ◦C) (Table 4). The reduced complexity model for CanESM2
was the only one improved by the addition of soil moisture (Eq. 3) with R2 increasing20

from 0.57 to 0.74. Soil carbon outputs from GISS-E2 (R2 < 0.05) and MPI-ESM-LR
(R2 < 0.51) were not well explained by any of the reduced complexity models.

4 Discussion

Because belowground carbon stocks are so large, accurate models of the soil car-
bon cycle are essential for predicting carbon-climate feedbacks in the future. As far25
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as we know, our analysis is the first to benchmark soil carbon outputs from ESMs
against empirical data at the global scale and explore the possible factors contributing
to differences among models. Although some models predicted reasonable global soil
carbon totals, only a few were able to match biome totals and none were able to repro-
duce grid-scale distributions of soil carbon. Better performance at the biome to global5

scale may be due to aggregation of variable environmental conditions within biomes
that were influential in the grid scale comparison. At the grid scale in particular, there
are a number of factors that may have contributed to the poor agreement between
model predictions and empirical data. These factors include (1) uncertainties in the
data, (2) incorrect representation of soil carbon drivers in the models (e.g. NPP, tem-10

perature, moisture), (3) incorrect model parameterization of the soil carbon response
to drivers, and (4) incorrect model structure. Addressing these issues will be essential
for increasing confidence in ESM predictions of soil carbon in the future.

Our ability to evaluate model performance relies on high quality empirical data with
associated estimates of uncertainty. Despite their comprehensiveness, a lack of quanti-15

tative uncertainty estimates for the HWSD and NCSCD datasets constrains our bench-
marking analyses. Although the models clearly disagree among themselves, knowing
which model predictions diverge from the data is difficult to assess without a formal
analysis of uncertainty in the data. Our preliminary analyses based on expert opin-
ion indicate that uncertainty in empirical estimates of soil carbon stocks could exceed20

770 Pg C at the global scale, an amount similar to the entire atmospheric pool of car-
bon. In addition to these preliminary uncertainty estimates, we found that the spatial
correlation between the HWSD and the NCSCD was only 0.33 where they overlap. This
value was higher than any model-data correlation for the same region, but it clearly in-
dicates that there is room for improvement in the empirical estimates.25

Improving empirical estimates will not, however, resolve the differences in soil carbon
predictions we observed across the models. Because they do not all agree with one
another, at least some of the models, and possibly all of them, could improve their
representations of soil carbon dynamics. One set of improvements should focus on
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the driving variables for soil carbon in the models. For example, soil carbon stocks are
positively related to NPP (Table 4), which varies by a factor of 3.4 across the models.
The spatial distribution of NPP was similarly highly variable across models (Fig. S3).
In contrast, mean annual soil temperature was relatively consistent between the EMSs
(Fig. S4). Empirical models, using field measurements of NPP extrapolated globally5

based on environmental parameters indicate that global NPP is approximately 54.0±
10.5 PgCyr−1 (mean ± standard deviation), roughly in agreement with remote sensing
estimates (Ito, 2011). CCSM, BCC-CSM1.1, HadGEM2, CanESM2, INM-CM4, GISS-
E2, and MIROC-ESM all predicted global NPP within two standard deviations of the
Ito (2011) estimate, ranging from 46.3 to 72.9 Pg C yr−1. The remaining 5 models fell10

outside this range, which may affect their predictions of soil carbon. Thus, improving
model predictions of driving variables like NPP, and to a lesser extent temperature and
soil moisture, could also improve soil carbon predictions.

Another potential source of disagreement between models is the response to driving
variables such as NPP, temperature, and soil moisture. This response is determined by15

model parameterization, which we summarized by calculating global turnover times for
soil carbon (Fig. 2, Table 4). Based on estimates of heterotrophic soil respiration and
soil carbon stocks, global turnover times for soil carbon range from 18.5 yr (Amundson,
2001) to 32 yr (Raich and Schlesinger, 1992). NorESM1, CanESM2, and INM-CM4
turnover times fall within this range, whereas the other models do not. Correctly pa-20

rameterizing soil carbon models remains a challenge because important mechanisms
can operate at spatial scales much smaller than an ESM grid cell. Differences in soil
texture and topography at small scales may lead to non-linear effects on soil carbon
storage that are not well described by the average characteristics of a grid cell. For
instance, relatively small scale topographic variations are associated with peatland for-25

mation (Gorham, 1991; Koven et al., 2011).
Improving empirical datasets, model driving variables, and model parameterization

could substantially increase model-data agreement for present-day soil carbon stocks.
However, matching current soil survey data is a necessary but not sufficient condition
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to validate the accuracy of Earth system models. In order to have confidence in future
predictions, the models must correctly represent the mechanisms and drivers of soil
carbon change. Models with incorrect mechanisms or drivers could be tuned to make
correct predictions of current soil carbon stocks, but might generate different predic-
tions of soil carbon stocks over time.5

We initially hypothesized that models with more pools would have greater flexibility
and capture more of the spatial variation in soil carbon. However, the structural features
that we examined did not clearly relate to differences in ESM agreement with empirical
data (Tables 1 and 3). We saw no pattern in ESM-data agreement with respect to
number of soil carbon pools or temperature and moisture sensitivity functions, nor with10

respect to presence of a nitrogen component. Furthermore, our reduced complexity
model (Eq. 3) explained most of the variation in 9 of 11 model types (0.73 < R2 <
0.93). This result confirms that, despite different soil carbon predictions, most of the
models share a similar underlying structure. Such similarity means that the models
likely make similar assumptions about the mechanisms regulating soil carbon cycling.15

If these underlying assumptions are incorrect or incomplete, the resulting errors will be
present in all of the models.

CanESM2, MPI-ESM-LR, and GISS-E2 are three exceptions that were not well ex-
plained by our reduced complexity model (Eq. 2) driven by NPP and soil temperature
(Table 4), and thus may be examples of models with structural differences. CanESM220

was the only model in which soil water content contributed to the explanatory power of
the reduced complexity model (R2 improved from 0.57 to 0.74). This dependency on
soil water content could be explained by the biome-specific turnover time in CanESM2.
Since biomes are partially determined by precipitation, the effect of biome-specific
turnover times may have been reflected in an increased sensitivity to soil moisture25

in our reduced complexity model. Outputs from MPI-ESM-LR were only moderately
explained by our reduced complexity models (R2 < 0.51). We do not have a good
explanation for the poor fit since there was no significant deviation in documented
model structure, and NPP and heterotrophic respiration were roughly in line with the
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predictions from other models. GISS-E2 outputs were poorly explained by the reduced
complexity model (R2 < 0.01). Unlike other models, GISS-E2 showed a unique discon-
nect between NPP and soil carbon which could be due to differences in the way plant
biomass is allocated to liter in the models. However, as with MPI-ESM-LR we cannot
offer a definitive explanation for the poor fit.5

Although we did not identify major structural differences among models, they may all
be missing key processes governing long term carbon storage that may affect model-
data agreement. These key governing components may include aggregate interactions
(Six et al., 2000), microbial dynamics (Todd-Brown et al., 2010), cryoturbation (Koven
et al., 2011), syngenetic soil formation (Shur et al., 2004), and rare substrate formation10

(Allison, 2006). For example, microbial uptake of carbon substrates is non-linearly de-
pendent on substrate concentration, whereas current models use a linear dependence
(Schimel and Weintraub, 2003; German et al., 2011). Representing these processes
in the structure of soil carbon models remains a major challenge. A multi-scale ap-
proach is required to determine which processes are important at the global scale. For15

example, slope affects soil drainage and thus moisture. Some grid cells may have an
average slope near zero, but include topographic variation and low-lying areas with
water-logged soils and high rates of soil carbon accumulation at the kilometer scale.

5 Conclusions

Overall, we found that that soil carbon sub-models in ESMs have difficulty representing20

present-day stocks of soil carbon, particularly at the scale of a model grid cell. Despite
similar overall structures, the models do not agree among themselves or with empirical
data on the global distribution of soil carbon. Reconciling this disagreement will require
a range of approaches, including better prediction of soil carbon drivers, more accurate
model parameterization, and more comprehensive representation of critical biological25

and geochemical mechanisms in the structure of soil carbon sub-models. However,
there is also a need for better quantification of the uncertainty in empirical estimates
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of soil carbon stocks that are used to benchmark ESMs. If this uncertainty is too high
for rigorous model comparison, additional measurements of soil carbon stocks may be
required in some regions of the world. Addressing these issues will improve our ability
to predict the response of the carbon cycle to climate change and inform policymakers
about the potential impacts of carbon emissions.5

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/9/14437/2012/
bgd-9-14437-2012-supplement.pdf.
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Neill, D. A., Nepstad, D., Patiño, S., Peñuela, M. C., Prieto, A., Ramı̀rez, F., Schwarz, M.,
Silva, J., Silveira, M., Thomas, A. S., Steege, H. t., Stropp, J., Vásquez, R., Zelazowski, P.,

14461

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14437/2012/bgd-9-14437-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14437/2012/bgd-9-14437-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/gmd-4-723-2011
http://dx.doi.org/10.1029/2007JG000563


BGD
9, 14437–14473, 2012

Soil carbon drivers
and benchmarks in

Earth system models

K. E. O. Todd-Brown et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Dávila, E. A., Andelman, S., Andrade, A., Chao, K.-J., Erwin, T., Di Fiore, A., Euŕıdice
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Table 1. Full summary of model types including model names, history of development, number
of soil/litter pools, temperature/moisture functions, and link to nitrogen cycling.

Model name Soil model history Litter Soil Temperature Moisture Nitrogen

BCC-CSM1.1
(Wu et al., 2012)

AVIM2 (Ji et al., 2008; Huang et al., 2007)
CEVSA (Cao and Woodward, 1998)
CENTURY (Parton et al., 1987; Parton et al., 1993)

2 6 hilla hill Yes

CanESM2
(CMIP5 output)

CTEM1 (Arora et al., 2011; Arora and Boer, 2005;
Arora, 2003)

1b 1b Q10c hill No

CCSM4
(Gent et al., 2011)

CLM4 (Oleson et al., 2008)
CN (Thornton et al., 2007)
Biome-BCG 4.1.2 (Thornton and Rosenbloom, 2005; Thornton
et al., 2002; Thornton, 1998; Kimball et al., 1997)
van Veen et al. (1984), van Veen and Paul (1981),
Olson (1963)

3 3 Arrhenius increasing Yes

GFDL-ESM2G
(CMIP5 output)

LM3 (LM3p7 cESM, M45) (Shevliakova et al., 2009)
ED (Moorcroft et al., 2001)
(Bolker et al., 1998)
CENTURY (Parton et al., 1987)

– 2 hill increasing No

GISS-E2-H
GISS-E2-R
(personal communication,
Nancy Kiang)

NCAR-CSM1.4 (Doney et al., 2006)
NASA-CASA (Randerson et al., 1997; Potter et al., 1993)

– 9 increasing increasing No

HadGEM2-ES
HadGEM2-CC
(Jones et al., 2011)

(Martin et al., 2011; Collins et al., 2011)
TRIFFID (Cox, 2001)

– 4 Q10 hill No

INM-CM4
(Volodin et al., 2010)

(Volodin, 2007)
LSM (Bonan, 1995, 1996; Bunnell et al., 1977)

– 1b Q10c hill No

IPSL-CM5A-LR
IPSL-CM5B-LR
(http://icmc.ipsl.fr)

ORCHIDEE (http://orchidee.ipsl.jussieu.fr/)
STOMATE (Krinner et al., 2005)
CENTURY (Parton, 1988)

3 4 Q10 increasing No

MIROC-ESM
MIROC-ESM-CHEM
(Watanabe et al., 2011)

SEIB-DGVM (Sato et al., 2007)
Roth-C (Coleman and Jenkinson, 1999)
DEMETER-1 (Foley, 1995)
CENTURY (Parton et al., 1992, 1987)

– 2 Arrhenius increasing No

MPI-ESM-LR
(CMIP5 output)

JSBACH (Reddatz et al., 2007)
BETHY (Knorr, 2000)
CENTURY (Parton et al., 1993)

1 1 Q10 increasing No

NorESM1-ME
NorESM1-M
(Tjiputra et al., 2012)

CLM4 (Oleson et al., 2008)
CN (Thornton et al., 2007)
Biome-BCG 4.1.2 (Thornton and Rosenbloom, 2005; Thornton
et al., 2002; Thornton, 1998; Kimball et al., 1997)
van Veen et al. (1984), van Veen and Paul (1981)
Olson (1963)

3 3 Arrhenius increasing Yes

a We define a hill function as a function that increases to a maximum and then decreases.
b Turnover parameterization dependent on biome or vegetation type.
c Q10 value dependent on temperature.
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Table 2. Soil carbon totals across all grid cells in each Earth system model (ESM), grid cells
present in the Harmonized World Soil Database (HWSD) and ESM, and grid cells present in
the Northern Circumpolar Soil Carbon Database (NCSCD) and ESM. 95 % confidence intervals
based on expert opinion are shown in brackets for the databases.

Database or Original Number of Ensembles Soil carbon (Pg C)

model name grid size model per Global HWSD and NCSCD and
lat × lon versions version total ESM shared ESM shared

HWSD 0.5×0.5 – – 1255 1122 289
[891, 1657]

NCSCD 1×1 – – 501 449 497
[380, 622]

CCSM4 0.94×1.25 1 6 514 467 58
NorESM1 1.89×2.50 2 3, 1 549 493 62
BCC-CSM1.1 2.81×2.81 1 3 1048 925 240
HadGEM2 1.25×1.88 2 1, 2 1119 1020 193
IPSL-CM5 1.89×3.75 2 5, 1 1344 1179 394
GFDL-ESM2G 2.01×2.50 1 1 1422 1264 698
CanESM2 2.79×2.81 1 5 1542 1340 368
INM-CM4 1.50×2.00 1 1 1681 1524 279
GISS-E2 2.00×2.50 2 15, 16 1968 1754 545
MIROC-ESM 2.79×2.81 2 3, 1 2565 2317 802
MPI-ESM-LR 1.86×1.88 1 3 3046 2787 326
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Table 3. Goodness-of-fit measures of soil carbon density by grid cell for each Earth system
model (ESM) versus the Harmonized World Soil Database (HWSD) and Northern Circumpolar
Soil Carbon Database (NCSCD). Ts = Taylor score; c = Pearson correlation coefficient; RMSE
= root mean square error.

Model or data set HWSD NCSCD

Ts c RMSE Ts c RMSE
(kg C m−2) (kg C m−2)

HWSD NA NA NA 0.60 0.33 20.0
CCSM4 0.21 0.15 11.5 0.05 −0.09 27.6
NorESM1 0.24 0.15 11.3 0.06 −0.12 27.6
BCC-CSM1.1 0.51 0.32 9.4 0.17 −0.04 21.1
HadGEM2 0.54 0.27 9.8 0.14 −0.14 23.2
IPSL-CM5 0.69 0.39 10.0 0.19 0.19 16.3
GFDL-ESM2G 0.44 0.24 17.9 0.47 −0.02 24.9
CanESM2 0.61 0.24 12.6 0.48 −0.01 21.9
INM-CM4 0.63 0.26 11.6 0.31 −0.17 22.8
GISS-E2 0.31 0.02 22.8 0.43 −0.13 26.0
MIROC-ESM 0.49 0.39 20.6 0.49 −0.02 28.0
MPI-ESM-LR 0.40 0.00 21.8 0.40 −0.10 22.6
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Table 4. Reduced complexity model explanation of variation in soil carbon distribution for mod-
els dependent on net primary productivity (NPP; Eq. 1), NPP and soil temperature (Eq. 2),
and NPP, soil temperature and soil moisture (Eq. 3) with parameterization for Eq. (2). 1/k is
analogous to turnover time in years. CanESM2 has a moisture modified turnover time (1/ka)
of 367.29, Q10 = 1.48, and a moisture exponent b = 0.46 when moisture is considered. All R2

values were statistically significant (P < 0.05) unless otherwise indicated (NS).

Csoil = NPP/
R2 (kQ10

(T−15)/10) Eq. (2)

Csoil = NPP/k Csoil = NPP/k(T ) Csoil = NPP/k(T ,W ) 1/k Q10
Model name Eq. (1) Eq. (2) Eq. (3) (yr)

CCSM4 0.76 0.91 0.91 11.6 1.57
NorESM1 0.40 0.78 0.79 21.6 1.84
HadGEM2 0.55 0.86 0.86 13.7 1.51
BCC-CSM1.1 0.28 0.93 0.93 16.7 2.01
CanESM2 NS 0.57 0.74 22.5 1.74
IPSL-CM5 0.09 0.93 0.93 13.0 1.62
GFDL-ESM2G NS 0.85 0.89 10.9 2.59
INM-CM4 NS 0.73 0.73 20.7 2.18
GISS-E2 NS NS 0.01 7.6 4.00
MIROC-ESM 0.08 0.76 0.76 38.3 1.99
MPI-ESM-LR 0.38 0.51 0.51 29.8 1.45
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Fig. 1. Carbon density (kg m−2) in the top 1 m of soil from the Harmonized World Soil
Database (HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC 2012) and Northern Circumpolar Soil Car-
bon Database (NCSCB) (Tarnocai et al., 2009).
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Fig. 2. Total soil carbon (top) and net primary productivity (NPP; middle) by biome with calcu-
lated global turnover times (bottom) for each Earth system model and the Harmonized World
Soil Database (HWSD). The gray hashed area on the top panel represents the 95 % confidence
interval for global soil carbon in the HWSD based on expert opinion (see text). The hashed area
on the middle panel represents ±2 standard deviations around the mean global NPP estimate
from Ito (2011) based on empirical models. The hashed area on the bottom panel indicates
the range of turnover times for global soil carbon given in Amundson (2001) and Raich and
Schlesinger (1992).
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Fig. 3. Soil carbon densities (kg m−2) from Earth system models. These soil carbon densities
represent the 1995–2005 mean stocks from the historical simulations of the Climate Model
Intercomparison Project 5.
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Fig. 4. Linear regression of Harmonized World Soil Database (HWSD) versus Earth system
model (ESM) soil carbon totals (Pg C) for the 7 major biomes. The grey line indicates a 1 : 1
relationship.
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